Course o	code	Course Name	L-T-P Credits	Yes Intro	ar of luction			
CS30	1	THEORY OF COMPUTATION	3-1-0-4	20	016			
Prerequisite: Nil								
Course Objectives								
• To introduce the concept of formal languages.								
• To	• To discuss the Chomsky classification of formal languages with discussion on grammar							
and automata for regular, context-free, context sensitive and unrestricted languages.								
• To discuss the notions of decidability and halting problem.								
Syllabus								
Introduction to Automata Theory, Structure of an automaton, classification of automata, grammar								
and auto	and automata for generating each class of formal languages in the Chomsky Hierarchy,							
decidability and Halting problem.								
Expected	l Outo	come						
The Stude	ents w	ill be able to						
i. C	lassify	formal languages into regular, context-free, contex	t sensitive	and unre	estricted			
la la	nguag	es.						
11. D	esign finite state automata, regular grammar, regular expression and Myhill- Nerode							
re ···· D	lation representations for regular languages.							
111. D	esign push-down automata and context-free grammar representations for context-free							
	nguag	es. Turing Machines for accorting requiringly enumerable	longuagas					
\mathbf{IV} . \mathbf{D}	esign	and the notions of decidability and undecidability of p	roblome Up	lting pro	blom			
v. Understand the notions of decidability and undecidability of problems, Halting problem.								
1 I	ohn F	Honcroft Rajeev Motwani and Jeffrey D Illlman	Introductio	n to A	utomata			
1. J. T	heory	Languages and Computation 3/e Pearson Education	2007		atomata			
2 1	ohn C	Martin Introduction to Languages and the Theory of (omputation	TMH	2007			
3. N	Aichae	Sipser, Introduction To Theory of Computation, Cen	gage Publis	ners. 201	3			
Reference	ces		5464 I WOILD					
1. D	exter	C. Kozen, Automata and Computability, Springer1999						
		Course Plan						
			1		End			
					Sem.			
Module		Contents	/	Hours	Exam			
					Marks			
	Intro	duction to Automata Theory and its significance	Type 3					
	Forn	functions,						
	Designing finite automata, NFA, Finite Automata with Epsilon				15 %			
Ι	Transitions, Equivalence of NFA and DFA, Conversion of NFA to							
	DFA, Equivalence and Conversion of NFA with and without Epsilon							
	Trans	sitions.						
	Myhi	ll-Nerode Theorem, Minimal State FA Computati	on. Finite					
	State Machines with Output- Mealy and Moore machine (Design							
	Only), Two- Way Finite Automata.							
II	Regular Grammar, Regular Expressions, Equivalence of regular				1 = 0 /			
	expre	expressions and NFA with epsilon transitions. Converting Regular						
	Expressions to NFA with epsilon transitions Equivalence of DFA and							
	regul	ar expressions, converting DFA to Regular Expression	.S.					

FIRST INTERNAL EXAM					
III	 Pumping Lemma for Regular Languages, Applications of Pumping Lemma. Closure Properties of Regular sets (Proofs not required), Decision Problems related with Type 3 Formalism Type 2 Formalism:- Context-Free Languages (CFL), Context-Free Grammar (CFG), Derivation trees, Ambiguity, Simplification of CFG, Chomsky Normal Form, Greibach normal forms 	09	15 %		
IV	Non-Deterministic Pushdown Automata (NPDA), design. Equivalence of acceptance by final state and empty stack in PDA. Equivalence between NPDA and CFG, Deterministic Push Down Automata, Closure properties of CFLs (Proof not required), Decision Problems related with Type 3 Formalism.	08	15 %		
SECOND INTERNAL EXAM					
	Pumping Lemma for CFLs, Applications of Pumping Lemma.				
V	Automata (Design not required) Type 0 Formalism: Turing Machine (TM) – Basics and formal definition, TMs as language acceptors, TMs as Transducers, Designing Turing Machines.	09	20 %		
VI	Variants of TMs -Universal Turing Machine, Multi- tape TMs, Non Deterministic TMs, Enumeration Machine (Equivalence not required), Recursively Enumerable Languages, Recursive languages, Properties of Recursively Enumerable Languages and Recursive				
	08	20 %			

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12 b. *Four* questions each having <u>3</u> marks, uniformly covering modules I and II; All*four* questions have to be answered.
- 3. Part B
 - a. Total marks : 18 b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.

4. Part C

- a. Total marks : 12 b. *Four* questions each having <u>3</u> marks, uniformly covering modules III and IV; All*four* questions have to be answered.
- 5. Part D
 - a. Total marks : 18 b. <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts
- 6. Part E
 - a. Total Marks: 40
 b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered. A question can have a maximum of three sub-parts.

There should be at least 60% analytical/numerical questions.