code	Course Name	L-T-P Credits	Year of Introduction
CS403	PROGRAMMING PARADIGMS	3-0-0-3	2016
• To in	ectives: troduce the basic constructs that underlie all 1 troduce the basics of programming language of troduce the organizational framework for lear	lesign and implem	entation
Polymorphise determinacy; Subroutines Passing, Exc and Object features of	bes, and Bindings - Binding Time, Scope Rul m; Control Flow - Expression Evaluation, St Data Types - Type Systems, Type Checkin and Control Abstraction - Static and Dynami reption Handling, Co-routines; Functional an Orientation -Encapsulation, Inheritance, D Scripting Languages; Concurrency - Threa ; Run-time program Management.	ructured and Unstr ng, Equality Testi c Links, Calling S d Logic Language ynamic Method	ructured Flow, Non- ng and Assignment; equences, Parameter es; Data Abstraction Binding; Innovative
i. co ii. ai iii. aj	will be able to : ompare scope and binding of names in differe nalyze control flow structures in different pro ppraise data types in different programming la	gramming languag	
v. aj vi. ai vii. co	nalyze different control abstraction mechanisr ppraise constructs in functional, logic and scr nalyze object oriented constructs in different p ompare different concurrency constructs	ipting languages programming langu	lages
v. aj vi. an vii. co viii. ir Text book:	ppraise constructs in functional, logic and ser nalyze object oriented constructs in different p ompare different concurrency constructs nterpret the concepts of run- time program ma M L, Programming Language Pragmatics, 3rd	ipting languages programming langu nagement	

	Course Plan		
Module	Contents	Hours	End Sem. Exam Marks
I	 Names, Scopes and Bindings:- Names and Scopes, Binding Time, Scope Rules, Storage Management, Binding of Referencing Environments. Control Flow: - Expression Evaluation, Structured and Unstructured Flow, Sequencing, Selection, Iteration, Recursion, Non-determinacy. 		15 %
II	Data Types:-Type Systems, Type Checking, Records and Variants, Arrays, Strings, Sets, Pointers and Recursive Types, Lists, Files and Input/Output, Equality Testing and Assignment.	7	15 %
	FIRST INT <mark>E</mark> RNAL EXAM		
III	Subroutines and Control Abstraction: - Static and Dynamic Links, Calling Sequences, Parameter Passing, Generic Subroutines and Modules, Exception Handling, Co-routines.	7	15 %
IV	Functional and Logic Languages:- Lambda Calculus, Overview of Scheme, Strictness and Lazy Evaluation, Streams and Monads, Higher-Order Functions, Logic Programming in Prolog, Limitations of Logic Programming.		15 %
	SECOND INTERNAL EXAM		
V	Data Abstraction and Object Orientation:-Encapsulation, Inheritance, Constructors and Destructors, Aliasing, Overloading, Polymorphism, Dynamic Method Binding, Multiple Inheritance. Innovative features of Scripting Languages:-Scoping rules, String and Pattern Manipulation, Data Types, Object Orientation.	7	20 %
VI	Concurrency:- Threads, Synchronization. Run-time program Management:- Virtual Machines, Late Binding of Machine Code, Reflection, Symbolic Debugging, Performance Analysis.		20 %
	END SEMESTER EXAM		

Question Paper Pattern (End semester exam)

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).
 All the TEN questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.

2014