Course code	Course Name	L-T-P -Credits	Yeaı Introdi	r of action			
CS404	Embedded Systems	3-0-0-3	201	6			
Course Objectives:							
• To introduce the technologies behind embedded computing systems.							
• To	introduce and discuss various software	e components involve	d in embedd	ed system			
des	ign and development.	Ĩ		2			
• To expose students to the recent trends in embedded system design.							
Syllabus:	-	-					
Introductio	on to embedded systems, basic co	omponents, its char	acteristics.	Modelling			
embedded	systems, firmware development. Inte	egration and testing of	of embedded	l systems,			
developme	development environment. Characteristics of RTOS, interrupt handling, creating tasks in a						
typical RT	OS. Embedded product development li	fe cycle.					
Expected	Outcome:						
The Stude	nt will be able to :						
i. de	emonstrate the role of individual con	mponents involved in	n a typical	embedded			
sy	system						
ii. ai	halyze the characteristics of different	computing elements	s and select	the most			
aj	oppropriate one for an embedded system	1					
111. m	odel the operation of a given embedded	a system	a davralanna	ant of on			
1V. St	ibstantiate the role of different soft	ware modules in th	e developm	ent of an			
	nocude system avelop simple tasks to rup on an PTOS						
	amine the latest trends prevalent in em	bedded system design					
Defenence	anime the fatest trends prevalent in en	ibedded system design	1				
	s: Stounstrup and Wayna Walf Hardw	ora / Softwara Co F	Design Pring	vinlag and			
I. J.	staunstrup and wayne won, mardw	ale / Soltwale CO-L	esign. Find	ipies and			
2 Jean L Jabrose Micro C/OS II: The Peal Time Kernel 2e, CPC Press 2002							
3 Rai Kamal Embedded Systems: Architecture Programming and Design Third							
Ed	ition. McGraw Hill Education (India).	2014.	g una Desi	5, 1			
4. Sh	bu K.V., Introduction to Embedded	Systems, McGraw H	Hill Education	on (India).			
20)9.	,		(,))			
5. Steave Heath, Embedded System Design, Second Edition, Elsevier.							
6. Wa	yne Wolf, Computers as Components	s-Principles of Embed	lded Comput	er System			
Design, Morgan Kaufmann publishers, Third edition, 2012.							
	Course I	Plan					
				End			
Modulo	Contonta		Hours	Sem.			
Module	Contents		Hours	Exam			
				Marks			
	Fundamentals of Embedded Systems	s- complex systems a	and				
	microprocessors- Embedded sys	tem design proc	ess				
Ι	.Specifications- architecture design	of embedded syste	- 6	15%			
	design of hardware and software cor	nponents- structural a	and				
	behavioural description.						
	Hardware Software Co-Design and	Program Modelling	-				
тт	Fundamental Issues, Computational	Models- Data Flo	W	1507			
11	Graph, Control Data Flow Graph, Star	te Machine,. Sequenti	al 9	13%			
	Model, Concurrent Model, Object orie	ented model, UML					

FIRST INTERNAL EXAMINATION				
III	Design and Development of Embedded Product – Firmware Design and Development – Design Approaches, Firmware Development Languages.	6	15%	
IV	Integration and Testing of Embedded Hardware and Firmware- Integration of Hardware and Firmware. Embedded System Development Environment – IDEs, Cross Compilers, Disassemblers, Decompilers, Simulators, Emulators and Debuggers.	6	15%	
SECOND INTERNAL EXAMINATION				
V	RTOS based Design – Basic operating system services. Interrupt handling in RTOS environment. Design Principles. Task scheduling models. How to Choose an RTOS. Case Study – MicroC/OS-II.	9	20%	
VI	Networks – Distributed Embedded Architectures, Networks for embedded systems, Network based design, Internet enabled systems. Embedded Product Development Life Cycle – Description – Objectives -Phases – Approaches1. Recent Trends in Embedded Computing.	6	20%	
END SEMESTER EXAM				

Question Paper Pattern

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having 9 marks. One question is from module I; one question is from module II; one question *uniformly* covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks : 18
- b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 50% analytical/numerical questions in all possible combinations of question choices.