Course code	Course Name	L-T-P -Credits	Year of Introduction 2016	
CS405	COMPUTER SYSTEM ARCHITECTURE	3-0-0-3		

Course Objectives:

- To impart a basic understanding of the parallel architecture and its operations
- To introduce the key features of high performance computers

Syllabus:

Basic concepts of parallel computer models, SIMD computers, Multiprocessors and multi-computers, Cache Coherence Protocols, Multicomputers, Pipelining computers

and Multithreading.

Expected outcome :

The Students will be able to :

- i. summarize different parallel computer models
- ii. analyze the advanced processor technologies
- iii. interpret memory hierarchy
- iv. compare different multiprocessor system interconnecting mechanisms
- v. interpret the mechanisms for enforcing cache coherence
- vi. analyze different message passing mechanisms
- vii. analyze different pipe lining techniques
- viii. appraise concepts of multithreaded and data flow architectures

Text Book:

• K. Hwang and Naresh Jotwani, Advanced Computer Architecture, Parallelism, Scalability, Programmability, TMH, 2010.

References:

- 1. H P Hayes, Computer Architecture and Organization, McGraw Hill, 1978.
- 2. K. Hwang & Briggs , Computer Architecture and Parallel Processing, McGraw Hill International, 1986
- 3. M J Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Narosa Publishing House, 2012.
- 4. M Sasikumar, D Shikkare and P Raviprakash, Introduction to Parallel Processing, PHI, 2014.
- 5. P M Kogge, The Architecture of Pipelined Computer, McGraw Hill, 1981.
- 6. PVS Rao, Computer System Architecture, PHI, 2009.
- 7. Patterson D. A. and Hennessy J. L., Morgan Kaufmann , Computer Organization and Design: The Hardware/Software Interface, Morgan Kaufmann Pub, 4/e, 2010.

ModuleContentsHoursSeries Example of the second of th		Course Plan				
IArchitecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of parallelism.615%IIProcessors and memory hierarchy - Advanced processor technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.815%IIIMultiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks.715%IIICache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem815%IVMessage Passing Mechanisms-Message Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%VInstruction pipeline design, Arithmetic pipeline design - Super Scalar Pipeline Design820%VIInstruction pipeline design, Arithmetic pipeline design - Super Scalar Pipeline Design820%VIMultithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	Module	Contents	Hours	End Sem. Exam Marks		
IItechnology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory hierarchy technology.815% FIRST INTERNAL EXAM Multiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Pipelining and Superscalar techniques - Linear Pipeline 	I	Architecture, System Attributes to performance, Amdahl's law for a fixed workload. Multiprocessors and Multicomputers, Multivector and SIMD computers, Architectural development tracks, Conditions of	6	15%		
Multiprocessors system interconnects - Hierarchical bus systems, Cross bar switch and multiport memory, Multistage and combining networks.IIIIIICache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%VInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%VIMultithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading 	Π	technology- Design Space of processors, Instruction Set Architectures, CISC Scalar Processors, RISC Scalar Processors, Superscalar and vector processors, Memory	8	15%		
IIIsystems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem715%IVMessage Passing Mechanisms-Message Routing schemes, Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline 		FIRST INTERNAL EXAM				
IVFlow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques - Linear Pipeline processors and Nonlinear pipeline processors815%SECOND INTERNAL EXAMVInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading820%VIIssues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	III	systems, Cross bar switch and multiport memory, Multistage and combining networks. Cache Coherence and Synchronization Mechanisms, Cache Coherence Problem, Snoopy Bus Protocol, Directory Based Protocol, Hardware Synchronization Problem		15%		
VInstruction pipeline design, Arithmetic pipeline deign - Super Scalar Pipeline Design820%Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	IV	Flow control Strategies, Multicast Routing Algorithms. Pipelining and Superscalar techniques – Linear Pipeline	8	15%		
VSuper Scalar Pipeline Design820%Multithreaded and data flow architectures - Latency hiding techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%			T	I		
VItechniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and820%	V		8	20%		
hybrid architecture	VI	techniques, Principles of multithreading - Multithreading Issues and Solutions, Multiple context Processors, Fine- grain Multicomputer- Fine-grain Parallelism. Dataflow and	8	20%		

Question Paper Pattern (End semester exam)

- 1. There will be FOUR parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks: 40
 - *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks: 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks: 24
 - b. *THREE* questions, each having **12 marks**. One question is from **module V**; one question is from **module VI**; one question *uniformly* covers **modules V & VI**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.