Course code	Course Name	L-T-P – Credits	Year Introdu	of Iction	
CS407	DISTRIBUTED COMPUTING	3-0-0-3	201	.6	
 Course Objectives: To introduce fundamental principles of distributed systems, technical challenges and key design issues. To impart knowledge of the distributed computing models, algorithms and the design of distributed system. Syllabus: Introduction to distributed computing, Design issues, Distributed Computing Models, System models, Inter-process communication, Distributed file system, Name Service , Distributed mutual exclusion , Distributed system design. 					
Expected Outcome The Students will be able to : i. distinguish distributed computing paradigm from other computing paradigms ii. identify the core concepts of distributed systems iii. illustrate the mechanisms of inter process communication in distributed system iv. apply appropriate distributed system principles in ensuring transparency, consistency and fault-tolerance in distributed file system v. compare the concurrency control mechanisms in distributed transactional environment vi. outline the need for mutual exclusion and election algorithms in distributed systems					
 Text Books: 1. George Coulouris, Jean Dollimore and Tim Kindberg , Distributed Systems: Concepts and Design, Fifth Edition , Pearson Education, 2011 2. Pradeep K Sinha, Distributed Operating Systems : Concepts and Design, Prentice Hall of India 					
References: Estimation 1. A S Tanenbaum and M V Steen , Distributed Systems: Principles and paradigms, Pearson Education, 2007 Pearson Education, 2007 2. M Solomon and J Krammer, Distributed Systems and Computer Networks, PHI Course Plan					
Module	Contents		Hours	End Sem. Exam Marks	
I	Evolution of Distributed Computing -Issue a distributed system- Challenges- Minicon Workstation model - Workstation-Se Processor - pool model - Trends in distr	es in designing nputer model – erver model– ibuted systems	7	15%	
II	System models: Physical models - Architec Fundamental models	tural models -	6	15%	

FIRST INTERNAL EXAM				
III	Interprocess communication: characteristics – group communication - Multicast Communication –Remote Procedure call - Network virtualization. Case study : Skype	7	15%	
IV	Distributed file system: File service architecture - Network file system- Andrew file system- Name Service	7	15%	
SECOND INTERNAL EXAM				
V	Transactional concurrency control:- Transactions, Nested transactions-Locks-Optimistic concurrency control	7	20%	
VI	Distributed mutual exclusion – central server algorithm – ring based algorithm- Maekawa's voting algorithm – Election: Ring -based election algorithm – Bully algorithm	7	20%	
END SEMESTER EXAM				

Question Paper Pattern

1. There will be *FOUR* parts in the question paper – A, B, C, D

2. Part A

- a. Total marks : 40
- b. TEN questions, each have 4 marks, covering all the SIX modules (THREE questions from modules I & II; THREE questions from modules III & IV; FOUR questions from modules V & VI).
 - All the TEN questions have to be answered.

3. Part B

- a. Total marks: 18
- b. *THREE* questions, each having <mark>9 marks. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.</mark>
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.

ESTO.

- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks : 24
- b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
- c. *Any TWO* questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* **50**% analytical/numerical questions in all possible combinations of question choices.