Course code	Course Name	L-T- P- Credit	Year of Introduction		
CS463	DIGITAL IMAGE PROCESSING	3-0-0-3	2016		
 Course Objectives: To introduce and discuss the fundamental concepts and applications of Digital Image Processing. To discuss various basic operations in Digital Image Processing. To know various transform domains 					
Syllabus: Introduction on digital image processing fundamentals; Image Transforms; Spatial and frequency domain filtering; Image segmentation; Morphological Image processing; Representation and Description.					
 Expected Outcome The Students will be able to : compare different methods for image acquisition, storage and representation in digital devices and computers appreciate role of image transforms in representing, highlighting, and modifying image features interpret the mathematical principles in digital image enhancement and apply them in spatial domain and frequency domain apply various methods for segmenting image and identifying image components summarise different reshaping operations on the image and their practical applications identify image representation techniques that enable encoding and decoding images Text Books: A K. Jain, Fundamentals of digital image processing, Prentice Hall of India, 1989. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing (English) 3rd Edition, Pearson India, 2013. 					
 Al Bovik, The Essential Guide to Image Processing, Academic Press, 2009. Milan Sonka, Vaclav Hlavac and Roger Boyle, Image Processing, Analysis, and Machine Vision, Thomson Learning, 2008. S Jayaraman, S Esakkirajan and T Veerakumar, Digital Image Processing, McGraw Hill Education, 2009. 					
COURSE PLAN					
Module	Contents	Hours	End Sem. Exam Marks		
Ι	Introduction to Image processing: Fundamental steps in image processing; Components of image processing system; Pixels; coordinate conventions; Imaging Geometry; Spatial Domain; Frequency Domain; sampling and quantization; Basic relationship between pixels; Applications of Image Processing.	6	15%		

П	Image transforms and its properties – Unitary transform; Discrete Fourier Transform; Discrete Cosine Transform; Walsh Transform; Hadamard Transform;	7	15%		
FIRST INTERNAL EXAM					
III	Image Enhancement in spatial domain Basic Gray Level Transformation functions – Image Negatives; Log Transformations; Power-Law Transformations. Piecewise-Linear Transformation Functions: Contrast Stretching; Gray Level Slicing; Bit Plane Slicing; Histogram Processing–Equalization; Specification. Basics of Spatial Filtering – Smoothing: Smoothing Linear Filters; Ordered Statistic Filters; Sharpening: Laplacian; Unsharp Masking and High Boost Filtering.	A8L	15%		
IV	Image Enhancement in Frequency Domain Basics of Filtering in Frequency Domain, Filters - Smoothing Frequency Domain Filters : Ideal Low Pass Filter; Gaussian Low Pass Filter; Butterworth Low Pass Filter; Sharpening Frequency Domain Filters: Ideal High Pass Filter; Gaussian High Pass Filter; Butterworth High Pass Filter; Homomorphic Filtering.	6	15%		
SECOND INTERNAL EXAM					
V	Image Segmentation: Pixel-Based Approach- Multi-Level Thresholding, Local Thresholding, Threshold Detection Method; Region-Based Approach- Region Growing Based Segmentation, Region Splitting, Region Merging, Split and Merge, Edge Detection - Edge Operators; Line Detection, Corner Detection.	8	20%		
VI	Morphological Operations Basics of Set Theory; Dilation and Erosion - Dilation, Erosion; Structuring Element; Opening and Closing; Hit or Miss Transformation. Representation and Description Representation - Boundary, Chain codes, Polygonal approximation approaches, Boundary segments.	7	20%		
END SEMESTER EXAM					

Question Paper Pattern (End semester exam)

- 1. There will be *FOUR* parts in the question paper A, B, C, D
- 2. Part A
 - a. Total marks : 40
 - b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI).

All the TEN questions have to be answered.

- 3. Part B
 - a. Total marks : 18
 - b. *THREE* questions, each having **9 marks**. One question is from **module I**; one question is from **module II**; one question *uniformly* covers **modules I & II**.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 4. Part C
 - a. Total marks : 18
 - b. *THREE* questions, each having 9 marks. One question is from module III; one question is from module IV; one question *uniformly* covers modules III & IV.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 5. Part D
 - a. Total marks : 24
 - b. *THREE* questions, each having 12 marks. One question is from module V; one question is from module VI; one question *uniformly* covers modules V & VI.
 - c. Any TWO questions have to be answered.
 - d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.