
Performance Pitfalls

Vipin Vasu

College Of Engineering,Trivandrum

Vipin Vasu (CET) HPC 1 / 18



Overview

1 Ameliorating the impact of OpenMP worksharing constructs

2 Determining OpenMP overhead for short loops

3 Serialization

4 False sharing

Vipin Vasu (CET) HPC 2 / 18



Ameliorating the impact of OpenMP worksharing
constructs

Whenever a parallel region is started or stopped or a parallel loop is
initiated or ended, there is some nonnegligible overhead involved.

Threads must be spawned or at least woken up from an idle state, the
size of the work packages (chunks) for each thread must be
determined, in the case of tasking or dynamic/guided scheduling
schemes each thread that becomes available must be supplied with a
new task to work on, and the default barrier at the end of
worksharing constructs or parallel regions synchronizes all threads.

If some simple guidelines are followed,the adverse effect of OpenMP
overhead can be reduced.

Vipin Vasu (CET) HPC 3 / 18



Ameliorating the impact of OpenMP worksharing
constructs

1 Run serial code if parallelism does not pay off
If the work sharing construct does not contain enough “work” per
thread because, e.g., each iteration of a short loop executes in a short
time, OpenMP overhead will lead to very bad performance.
It is then better to execute a serial version if the loop count is below
some threshold.

Vipin Vasu (CET) HPC 4 / 18



Ameliorating the impact of OpenMP worksharing
constructs

Instead of disabling parallel execution altogether, it may also be an
option to reduce the number of threads used on a particular parallel
region by means of the NUM THREADS clause

Fewer threads mean less overhead, and the resulting performance may
be better than with IF, at least for some loop lengths.

Vipin Vasu (CET) HPC 5 / 18



Ameliorating the impact of OpenMP worksharing
constructs

2 Avoid implicit barriers
OpenMP worksharing constructs insert barriers at the end.This is a
safe default so that all threads have completed their share of work
before anything after the construct is executed.
In cases where this is not required, a NOWAIT clause removes the
implicit barrier

Vipin Vasu (CET) HPC 6 / 18



Ameliorating the impact of OpenMP worksharing
constructs

There is also an implicit barrier at the end of a parallel region that
cannot be removed.

Implicit barriers add to synchronization overhead like critical regions,
but they are often required to protect from race conditions

Vipin Vasu (CET) HPC 7 / 18



Ameliorating the impact of OpenMP worksharing
constructs

3 Try to minimize the number of parallel regions
Parallelizing inner loop levels leads to increased OpenMP overhead
because a team of threads is spawned or woken up multiple times

Vipin Vasu (CET) HPC 8 / 18



Ameliorating the impact of OpenMP worksharing
constructs

In this particular example, the team of threads is restarted N times,
once in each iteration of the j loop. Pulling the complete parallel
construct to the outer loop reduces the number of restarts to one

Vipin Vasu (CET) HPC 9 / 18



The less often the team of threads needs to be forked or restarted,
the less overhead is incurred

Vipin Vasu (CET) HPC 10 / 18



Ameliorating the impact of OpenMP worksharing
constructs

The SIN function call between the loops is performed by the master
thread only. At the end of the first loop, all threads synchronize and
are possibly even put to sleep,and they are started again when the
second loop executes.

Vipin Vasu (CET) HPC 11 / 18



Ameliorating the impact of OpenMP worksharing
constructs

Now the SIN function in line 10 is computed by all threads, and
consequently S must be privatized. It is safe to use the NOWAIT
clause on the second loop in order to reduce barrier overhead.

Vipin Vasu (CET) HPC 12 / 18



Ameliorating the impact of OpenMP worksharing
constructs

4 Avoid “trivial” load imbalance
The number of tasks, or the parallel loop trip count, should be large
compared to the number of threads.
If the trip count is a small noninteger multiple of the number of
threads, some threads will end up doing significantly less work than
others, leading to load imbalance.

Vipin Vasu (CET) HPC 13 / 18



Ameliorating the impact of OpenMP worksharing
constructs

A typical situation where it may become important is the execution of
deep loop nests on highly threaded architectures.Consider the
program below:

Vipin Vasu (CET) HPC 14 / 18



Ameliorating the impact of OpenMP worksharing
constructs

The outer loop is the natural candidate for parallelization here,
causing the minimal number of executed worksharing loops (and
implicit barriers) and generating the least overhead.

The COLLAPSE clause can collapse the two loop levels into one loop
with a loop length of M x N and the resulting long loop will be
executed in parallel by all threads.

Vipin Vasu (CET) HPC 15 / 18



Determining OpenMP overhead for short loops

In general, the overhead consists of a constant part and a part that
depends on the number of threads

Vipin Vasu (CET) HPC 16 / 18



Serialization

big fat lock

use a separate OpenMP lock variable

privatization should be given priority over synchronization when
possible.

Vipin Vasu (CET) HPC 17 / 18



False sharing

In some cases cache coherence traffic can throttle performance to
very low levels.

standard technique is array padding

data privatization, each thread gets its own local copy

thereby won’t occupy same cache line.

Vipin Vasu (CET) HPC 18 / 18


	Ameliorating the impact of OpenMP worksharing constructs
	Determining OpenMP overhead for short loops
	Serialization
	False sharing

