
OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

OpenMP

Vipin Vasu



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Outline

1 OpenMP

2 Parallel Execution

3 Data Scoping

4 Worksharing for Loops

5 Synchronization

6 Conclusion



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

OpenMP

• Shared memory parallel programming

• OpenMP is a set of compiler directives

• The central entity in an OpenMP program is not a process
but a thread.

• Threads are also called “lightweight processes” because
several of them can share a common address space and
mutually access data. Spawning a thread is much less
costly than forking a new process, because threads share
everything but instruction pointer (the address of the next
instruction to be executed), stack pointer and register
state.



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Parallel Execution
• Master thread - runs immediately after startup

• Parallel execution happens inside parallel regions

• Between two parallel regions, no thread except the master
thread executes any code. This is also called the “fork-join
model”



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Parallel Execution



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Data Scoping

True work sharing, makes sense only if each thread can have its
own, private variables. OpenMP supports this concept by
defining a separate stack for every thread. There are three ways
to make private variables:

• A variable that exists before entry to a parallel construct
can be privatized, i.e.,made available as a private instance
for every thread, by a PRIVATE clause to the OMP
PARALLEL directive. The private variable’s scope extends
until the end of the parallel construct.

• The index variable of a worksharing loop is automatically
made private

• Local variables in a subroutine called from a parallel region
are private to each calling thread. This pertains also to
copies of actual arguments generated by the call-by-value
semantics



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Private Scope



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Private Scope

PRIVATE clause to the PARALLEL directive privatizes all
specified variables, i.e., each thread gets its own instance of
each variable on its local stack, with an undefined initial value
(C++ objects will be instantiated using the default
constructor). Using FIRSTPRIVATE instead of PRIVATE
would initialize the privatize instances with the contents of the
shared instance (in C++, the copy constructor is employed).



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Worksharing for Loops

• A DO directive in front of a do loop starts a worksharing
construct.

• The iterations of the loop are distributed among the
threads (which are running because we are in a parallel
region). Each thread gets its own iteration space, i.e., is
assigned to a different set of i values.

• How threads are mapped to iterations is
implementation-dependent by default, but can be
influenced by the programmer



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Synchronization

• Concurrent write access to a shared variable or, in more
general terms, a shared resource, must be avoided by all
means to circumvent race conditions.

• Critical regions solve this problem by making sure that at
most one thread at a time executes some piece of code.

• If a thread is executing code inside a critical region, and
another thread wants to enter, the latter must wait
(block) until the former has left the region.

• Critical regions hold the danger of deadlocks when used
inappropriately. A deadlock arises when one or more
“agents” (threads in this case) wait for resources that will
never become available.

• A critical region may be given a name that distinguishes it
from others.



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

Barrier

• The barrier is a synchronization point, which guarantees
that all threads have reached it before any thread goes on
executing the code below it.

• Barriers should be used with caution in OpenMP
programs, partly because of their potential to cause
deadlocks, but also due to their performance impact
(synchronization is overhead).

• Every parallel region executes an implicit barrier at its end,
which cannot be removed.

• There is also a default implicit barrier at the end of
worksharing loops and some other constructs to prevent
race conditions.



OpenMP

Vipin Vasu

OpenMP

Parallel
Execution

Data Scoping

Worksharing
for Loops

Synchronization

Conclusion

The End


	OpenMP
	Parallel Execution
	Data Scoping
	Worksharing for Loops
	Synchronization
	Conclusion

