
OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

OpenMP Lecture 2

Vipin Vasu

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Outline

1 Synchronization

2 Reduction

3 Loop Scheduling

4 Tasking

5 Conditional Compilation

6 Conclusion

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Critical Regions

Critical regions can be marked by using the command

#pragma omp critical (name)

{

critical-section;

}

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Atomicity

The atomic keyword in OpenMP specifies that the denoted
action happens atomically. It is commonly used to update
counters and other simple variables that are accessed by
multiple threads simultaneously.

#pragma omp atomic

sum += value;

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Barrier

Barriers are used for execution synchronization. Upon reaching
the barrier statement the thread waits for all other threads to
reach that point. Once all threads have executed the barrier
statement, further execution starts. There is an implicit barrier
at the end of each parallel block, and at the end of each
sections, for and single statement

first_set_of_lines;

#pragma omp barrier

second_set_of_lines;

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

nowait

It is used to avoid implicit barriers

#pragma omp parallel

{

#pragma omp for nowait

for(int n=0; n<10; ++n) Work();

SomeMoreCode();

}

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Reduction

The reduction clause is a mix between the private, shared, and
atomic clauses. It allows to accumulate a shared variable
without the atomic clause, but the type of accumulation must
be specified. It will often produce faster executing code than by
using the atomic clause.

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Factorial Function

int factorial(int number)

{

int fac = 1;

#pragma omp parallel for reduction(*:fac)

for(int n=2; n<=number; ++n)

fac *= n;

return fac;

}

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Reduction

To write the factorial function (shown above) without
reduction, it probably would look like this:

int factorial(int number)

{

int fac = 1;

#pragma omp parallel for

for(int n=2; n<=number; ++n)

{

#pragma omp atomic

fac *= n;

}

return fac;

}

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Loop Scheduling

The for construct splits the for-loop so that each thread in the
current team handles a different portion of the loop.

#pragma omp parallel

{

#pragma omp for

for(int n=0; n<10; ++n) printf(" %d", n);

}

printf(".\n");

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Static Scheduling

It divides the loop into contiguous chunks of (roughly) equal
size. Each thread then executes on exactly one chunk. Upon
entering the loop, each thread independently decides which
chunk of the loop they will process.

#pragma omp for schedule(static)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Dynamic Scheduling

Dynamic scheduling assigns a chunk of work, whose size is
defined by the chunksize, to the next thread that has finished
its current chunk. This allows for a very flexible distribution
which is usually not reproduced from run to run.

#pragma omp for schedule(dynamic, 3)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Guided Scheduling

Again, threads request new chunks dynamically, but the
chunksize is always proportional to the remaining number of
iterations divided by the number of threads.

#pragma omp for schedule(guided)

for(int n=0; n<10; ++n) printf(" %d", n);

printf(".\n");

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Runtime Scheduling

For debugging and profiling purposes, OpenMP provides a
facility to determine the loop scheduling at runtime. If the
scheduling clause specifies “RUNTIME,” the loop is scheduled
according to the contents of the OMP SCHEDULE shell
variable. However, there is no way to set different schedulings
for different loops that use the SCHEDULE(RUNTIME) clause.

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Tasking

In early versions of the standard, parallel worksharing in
OpenMP was mainly concerned with loop structures. However,
not all parallel work comes in loops; a typical example is a
linear list of objects , which should be processed in parallel.
Since a list is not easily addressable by an integer index or a
random-access iterator, a loop worksharing construct is ruled
out, or could only be used with considerable programming
effort. OpenMP 3.0 provides the task concept to circumvent
this limitation. A task is defined by the TASK directive, and
contains code to be executed. 1 When a thread encounters a
task construct, it may execute it right away or set up the
appropriate data environment and defer its execution. The task
is then ready to be executed later by any thread of the team.

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Tasking

struct node { node *left, *right; };

extern void process(node*);

void traverse(node* p)

{

if (p->left)

#pragma omp task

traverse(p->left);

if (p->right)

#pragma omp task

traverse(p->right);

process(p);

}

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

Conditional Compilation

In some cases it may be useful to write different code
depending on OpenMP being enabled or not. The directives
themselves are no problem here because they will be ignored
gracefully. Beyond this default behavior one may want to mask
out, e.g., calls to API functions or any code that makes no
sense without OpenMP enabled. This is supported in C/C++
by the preprocessor symbol OPENMP, which is defined only if
OpenMP is available.

OpenMP
Lecture 2

Vipin Vasu

Synchronization

Reduction

Loop
Scheduling

Tasking

Conditional
Compilation

Conclusion

The End

	Synchronization
	Reduction
	Loop Scheduling
	Tasking
	Conditional Compilation
	Conclusion

