
Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Simple measures, large impact

Vipin Vasu



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Outline

1 Elimination of Common Subexpressions

2 Avoiding Branches

3 Using SIMD instruction sets

4 Conclusion



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Elimination of Common
Subexpressions

• Common subexpression elimination is an optimization that
is often considered a task for compilers

• Basically one tries to save time by precalculating parts of
complex expressions and assigning them to temporary
variables before a code construct starts that uses those
parts multiple times.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Elimination of Common
Subexpressions

This optimization is also called loop invariant code motion



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Avoiding Branches

• “Tight” loops, i.e., loops that have few operations in
them, are typical candidates for software pipelining , loop
unrolling, and other optimization techniques .

• Compiler optimization fails or is inefficient, performance
will suffer if the loop body contains conditional branches.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Avoiding Branches



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction sets

• The use of SIMD in microprocessors is often termed
“vectorization,”

• Generally speaking, a “vectorizable” loop in this context
will run faster if more operations can be performed with a
single instruction.

• Preferring SIMD instructions over scalar ones is no
guarantee for a performance improvement.

• If the code is strongly limited by memory bandwidth, no
SIMD technique can bridge this gap.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction sets



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction sets



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction sets

• Some SIMD instruction sets distinguish between aligned
and unaligned data.

• In cases where the compiler knows nothing about the
alignment of arrays used in a vectorized loop and cannot
otherwise influence it, unaligned loads and stores must be
used, incurring some performance penalty.

• A loop with a true dependency cannot be SIMD
vectorized.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction Sets

• There are no fixed guidelines for when a loop qualifies as
vectorized.

• Load and store instructions could still be scalar; compilers
tend to report such loops as “vectorized”.

• On x86 processors with SSE(Streaming SIMD Extensions)
support, the lower and higher 64 bits of a register can be
moved independently.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction Sets



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

Using SIMD instruction Sets

• If the compiler cannot be convinced to properly vectorize a
loop even with additional command line options or source
code directives, before using assembly language altogether
is to employ compiler intrinsics.

• Intrinsics are constructs that resemble assembly
instructions so closely that they can usually be translated
1:1 by the compiler.



Simple
measures,

large impact

Vipin Vasu

Elimination of
Common
Subexpres-
sions

Avoiding
Branches

Using SIMD
instruction
sets

Conclusion

The End


	Elimination of Common Subexpressions
	Avoiding Branches
	Using SIMD instruction sets
	Conclusion

