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Elimination of Common
Subexpressions

• Common subexpression elimination is an optimization that
is often considered a task for compilers

• Basically one tries to save time by precalculating parts of
complex expressions and assigning them to temporary
variables before a code construct starts that uses those
parts multiple times.
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This optimization is also called loop invariant code motion
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Avoiding Branches

• “Tight” loops, i.e., loops that have few operations in
them, are typical candidates for software pipelining , loop
unrolling, and other optimization techniques .

• Compiler optimization fails or is inefficient, performance
will suffer if the loop body contains conditional branches.
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Using SIMD instruction sets

• The use of SIMD in microprocessors is often termed
“vectorization,”

• Generally speaking, a “vectorizable” loop in this context
will run faster if more operations can be performed with a
single instruction.

• Preferring SIMD instructions over scalar ones is no
guarantee for a performance improvement.

• If the code is strongly limited by memory bandwidth, no
SIMD technique can bridge this gap.
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Using SIMD instruction sets

• Some SIMD instruction sets distinguish between aligned
and unaligned data.

• In cases where the compiler knows nothing about the
alignment of arrays used in a vectorized loop and cannot
otherwise influence it, unaligned loads and stores must be
used, incurring some performance penalty.

• A loop with a true dependency cannot be SIMD
vectorized.
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Using SIMD instruction Sets

• There are no fixed guidelines for when a loop qualifies as
vectorized.

• Load and store instructions could still be scalar; compilers
tend to report such loops as “vectorized”.

• On x86 processors with SSE(Streaming SIMD Extensions)
support, the lower and higher 64 bits of a register can be
moved independently.
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Using SIMD instruction Sets

• If the compiler cannot be convinced to properly vectorize a
loop even with additional command line options or source
code directives, before using assembly language altogether
is to employ compiler intrinsics.

• Intrinsics are constructs that resemble assembly
instructions so closely that they can usually be translated
1:1 by the compiler.
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The End
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