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Example DFA 1

DFA for ?

b
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DFA for “Odd number of a’s”

How a DFA works?

Each state represents a property of the input string read so
far:

State e: Number of a’s seen is even.
State o: Number of a’s seen is odd.
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Example DFA 2

DFA for ?

a
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ab abbε

DFA for “Contains the substring abb”

Each state represents a property of the input string read so far:

State ε: Not seen abb and no suffix in a or ab.

State a: Not seen abb and has suffix a.

State ab: Not seen abb and has suffix ab.

State abb: Seen abb.
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Example DFA 3

DFA for ?
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DFA for “Even parity checker”

Accept strings over {0, 1} which have even parity in each length 4
block.

Accept “0101 · 1010”
Reject “0101 · 1011”
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Example DFA 4

Accept strings over {a, b, /, ∗} which don’t end inside a C-style
comment.

Scan from left to right till first “/*” is encountered; from
there to next “*/” is first comment; and so on.

Accept “ab/ ∗ aaa ∗ /abba” and “ab/ ∗ aa/ ∗ aa ∗ /bb ∗ /”.

Reject “ab/ ∗ aaa∗” and “ab/ ∗ aa/ ∗ aa ∗ /bb/ ∗ a”.

DFA for “C-comment tracker”

pbc

/ ∗ ∗

/a, ∗

in pecout

a

a, /

/

∗

a
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Definitions and notation

An alphabet is a finite set of symbols or “letters”. Eg.
Σ = {a, b, c} or Σ = {0, 1}.
A string or word over an alphabet Σ is a finite sequence of
letters from Σ. Eg. “aaba” is string over {a, b, c}.
Empty string (the string of length zero) is denoted by ε.

Set of all strings over Σ denoted by Σ∗.

What is the “size” or “cardinality” of Σ∗?

Infinite but Countable: Can enumerate in lexicographic order:

ε, a, b, c , aa, ab, . . .

.

Operation of concatenation on words: String u followed by
string v : written u · v or simply uv .

Eg. aabb · aaa = aabbaaa.
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Definitions and notation: Languages

A language over an alphabet Σ is a set of strings over Σ. Eg.
for Σ = {a, b, c}:

L = {abc, aaba}.
L1 = {ε, b, aa, bb, aab, aba, baa, bbb, . . .}.
L2 = {}.
L3 = {ε}.

How many languages are there over a given alphabet Σ?

Uncountably infinite
Use a diagonalization argument:

ε a b aa ab ba bb aaa aab aba abb bbb · · ·
L0 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L1 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L2 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L3 0 0 0 0 0 0 0 0 0 0 0 0 · · ·
L4 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L5 1 1 0 1 0 1 1 0 0 1 0 1 · · ·
L6 0 1 0 0 0 1 1 0 0 0 0 0 · · ·
L7 0 0 0 0 0 0 1 0 0 0 1 0 · · ·
.
.
.
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Definitions and notation: Languages

Concatenation of languages:

L1 · L2 = {u · v | u ∈ L1, v ∈ L2}.

Eg. {abc, aaba} · {ε, a, bb} =
{abc, aaba, abca, aabaa, abcbb, aababb}.
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Definitions and notation: DFA

A Deterministic Finite-State Automaton A over an alphabet Σ

is a
structure of the form

(Q, s, δ,F )

where

Q is a finite set of “states”

s ∈ Q is the “start” state

δ : Q × Σ→ Q is the “transition function.”

F ⊆ Q is the set of “final” states.

Example of “Odd a’s” DFA:
Here: Q = {e, o}, s = e, F = {o},

and δ is given by:

δ(e, a) = o,
δ(e, b) = e,
δ(o, a) = e,
δ(o, b) = o.

b
a

b

a

e o
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Definitions and notation: Language accepted by a DFA

δ̂ tells us how the DFA A behaves on a given word u.

Define δ̂ : Q × Σ∗ → Q as

δ̂(q, ε) = q

δ̂(q,w · a) = δ(δ̂(q,w), a).

Language accepted by A, denoted L(A), is defined as:

L(A) = {w ∈ Σ∗ | δ̂(s,w) ∈ F}.

Eg. For A = DFA for “Odd a’s”,

L(A) = {a, ab, ba, aaa, abb, bab, bba, . . .}.
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Regular Languages

A language L ⊆ Σ∗ is called regular if there is a DFA A over
Σ such that L(A) = L.

Examples of regular languages: “Odd a’s”, “strings that don’t
end inside a C-style comment”, {}, any finite language.

Regular

All languages over Σ

Are there non-regular languages?

Yes, uncountably many, since Reg is only countable while class
of all languages is uncountable.
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