Deterministic Finite-State Automata

CS 301: Theory of Computation

Sumesh Divakaran Department of Computer Science and Engineering College of Engineering Trivandrum

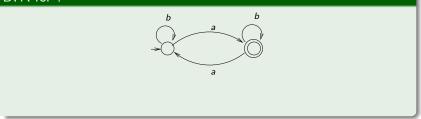
5th August 2019

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example DFA 1

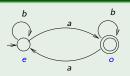
DFA for ?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example DFA 1

DFA for ?

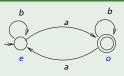


DFA for "Odd number of a's"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example DFA 1

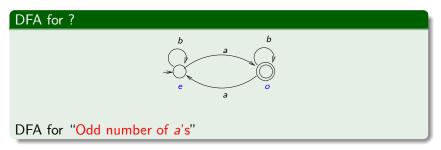
DFA for ?



DFA for "Odd number of a's"

How a DFA works?

Example DFA 1

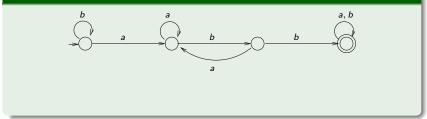


How a DFA works?

- Each state represents a property of the input string read so far:
 - State e: Number of a's seen is even.
 - State o: Number of a's seen is odd.

Example DFA 2

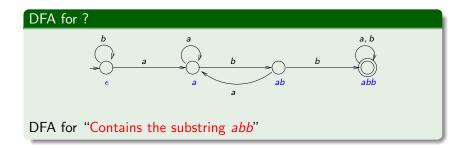
DFA for ?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example DFA 2

Example DFA 2



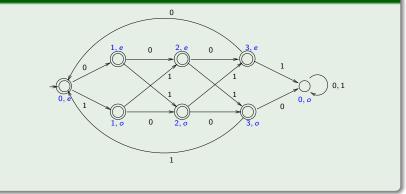
Each state represents a property of the input string read so far:

- State ϵ : Not seen *abb* and no suffix in *a* or *ab*.
- State a: Not seen abb and has suffix a.
- State *ab*: Not seen *abb* and has suffix *ab*.
- State *abb*: Seen *abb*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example DFA 3

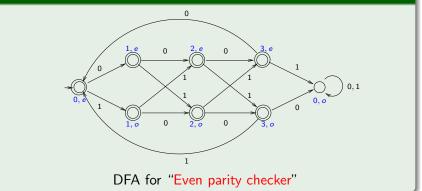
DFA for ?



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example DFA 3

DFA for ?



Accept strings over $\{0,1\}$ which have even parity in each length 4 block.

- Accept "0101 · 1010"
- Reject "0101 · 1011"

Example DFA 4

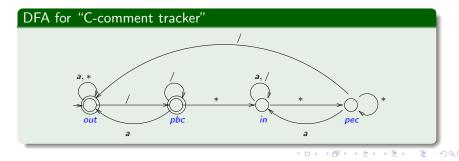
Accept strings over $\{a, b, /, *\}$ which don't end inside a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "*ab*/ * *aaa* * / *abba*" and "*ab*/ * *aa* / * *aa* * / *bb* * /".
- Reject "*ab*/ * *aaa**" and "*ab*/ * *aa*/ * *aa* * /*bb*/ * *a*".

Example DFA 4

Accept strings over $\{a, b, /, *\}$ which don't end inside a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "ab/ * aaa * /abba" and "ab/ * aa / * aa * /bb * /".
- Reject "*ab*/ * *aaa**" and "*ab*/ * *aa*/ * *aa* * /*bb*/ * *a*".



Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over {a, b, c}.
- Empty string (the string of length zero) is denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of $\Sigma^{\ast}?$

Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over {a, b, c}.
- Empty string (the string of length zero) is denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of Σ^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a , b , c , aa , ab , ...

Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over {a, b, c}.
- Empty string (the string of length zero) is denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of Σ^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a , b , c , aa , ab , ...

- Operation of concatenation on words: String *u* followed by string *v*: written *u* · *v* or simply *uv*.
 - Eg. $aabb \cdot aaa = aabbaaa$.

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ. Eg. for Σ = {a, b, c}:
 - L = {abc, aaba}.
 L₁ = {ϵ, b, aa, bb, aab, aba, baa, bbb, ...}.
 L₂ = {}.
 L₃ = {ϵ}.
- How many languages are there over a given alphabet Σ?

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ. Eg. for Σ = {a, b, c}:
 - L = {abc, aaba}.
 L₁ = {ϵ, b, aa, bb, aab, aba, baa, bbb,...}.
 L₂ = {}.
 L₃ = {ϵ}.

• How many languages are there over a given alphabet Σ?

- Uncountably infinite
- Use a diagonalization argument:

	ϵ	а	b	aa	ab	ba	bb	aaa	aab	aba	abb	bbb	
L ₀	0	1	0	0	0	1	1	0	0	0	0	0	
L_1	0	0	0	0	0	0	0	0	0	0	0	0	
L_2	1	1	0	1	0	1	1	0	0	1	0	1	
L_3	0	0	0	0	0	0	0	0	0	0	0	0	
L_4	0	1	0	0	0	1	1	0	0	0	0	0	
L_5	1	1	0	1	0	1	1	0	0	1	0	1	
L_6	0	1	0	0	0	1	1	0	0	0	0	0	
L_7	0	0	0	0	0	0	1	0	0	0	1	0	
•									< • • •		∢ ≣⇒	∢ ≣ ≯	≣ ∢

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definitions and notation: Languages

• Concatenation of languages:

$$L_1 \cdot L_2 = \{u \cdot v \mid u \in L_1, v \in L_2\}.$$

• Eg.
$$\{abc, aaba\} \cdot \{\epsilon, a, bb\} = \{abc, aaba, abca, aabaa, abcab, aababb\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definitions and notation: DFA

A Deterministic Finite-State Automaton ${\mathcal A}$ over an alphabet Σ

Definitions and notation: DFA

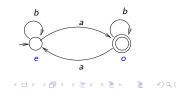
A Deterministic Finite-State Automaton ${\cal A}$ over an alphabet Σ is a structure of the form

$$(Q, s, \delta, F)$$

where

- Q is a finite set of "states"
- $s \in Q$ is the "start" state
- $\delta: Q \times \Sigma \to Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

Example of "Odd *a*'s" DFA: Here: $Q = \{e, o\}, s = e, F = \{o\},$ and δ is given by:



Definitions and notation: Language accepted by a DFA

- $\widehat{\delta}$ tells us how the DFA ${\mathcal A}$ behaves on a given word u.
- Define $\widehat{\delta}: Q imes \Sigma^* o Q$ as
 - $\widehat{\delta}(q,\epsilon) = q$ • $\widehat{\delta}(q,w \cdot a) = \delta(\widehat{\delta}(q,w),a).$

• Language *accepted* by A, denoted L(A), is defined as:

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \widehat{\delta}(s, w) \in F \}.$$

• Eg. For $\mathcal{A} = \mathsf{DFA}$ for "Odd a's",

 $L(\mathcal{A}) = \{a, ab, ba, aaa, abb, bab, bba, \ldots\}.$

Regular Languages

- A language L ⊆ Σ* is called *regular* if there is a DFA A over Σ such that L(A) = L.
- Examples of regular languages: "Odd *a*'s", "strings that don't end inside a C-style comment", {}, any finite language.

Regular

All languages over $\boldsymbol{\Sigma}$

• Are there non-regular languages?

Regular Languages

- A language L ⊆ Σ* is called *regular* if there is a DFA A over Σ such that L(A) = L.
- Examples of regular languages: "Odd *a*'s", "strings that don't end inside a C-style comment", {}, any finite language.

Regular

All languages over Σ

- Are there non-regular languages?
 - Yes, uncountably many, since Reg is only countable while class of all languages is uncountable.