Deterministic Finite-State Automata

CS 301:Theory of Computation

Sumesh Divakaran
Department of Computer Science and Engineering
College of Engineering Trivandrum
$5^{\text {th }}$ August 2019

Outline

(1) Introduction
(2) Formal Definitions and Notation

Example DFA 1

DFA for ?

Example DFA 1

DFA for ?

DFA for "Odd number of a's"

Example DFA 1

DFA for ?

DFA for "Odd number of a's"
How a DFA works?

Example DFA 1

DFA for ?

DFA for "Odd number of a's"
How a DFA works?

- Each state represents a property of the input string read so far:
- State e: Number of a's seen is even.
- State o: Number of a's seen is odd.

Example DFA 2

DFA for ？

Example DFA 2

DFA for?

DFA for "Contains the substring $a b b$ "

Example DFA 2

DFA for?

DFA for "Contains the substring $a b b$ "

Each state represents a property of the input string read so far:

- State ϵ : Not seen $a b b$ and no suffix in a or $a b$.
- State a : Not seen $a b b$ and has suffix a.
- State $a b$: Not seen $a b b$ and has suffix $a b$.
- State $a b b$: Seen $a b b$.

Example DFA 3

DFA for?

Example DFA 3

DFA for?

DFA for "Even parity checker"
Accept strings over $\{0,1\}$ which have even parity in each length 4 block.

- Accept "0101 • 1010"
- Reject "0101 • 1011"

Example DFA 4

Accept strings over $\{a, b, /, *\}$ which don't end inside a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "ab/*aaa */abba" and "ab/*aa/*aa*/bb*/".
- Reject "ab/*aaa*" and "ab/*aa/*aa*/bb/*a".

Example DFA 4

Accept strings over $\{a, b, /, *\}$ which don't end inside a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "ab/*aaa */abba" and "ab/*aa/*aa*/bb*/".
- Reject "ab/*aaa*" and "ab/*aa/*aa*/bb/*a".

DFA for "C-comment tracker"

Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma=\{a, b, c\}$ or $\Sigma=\{0,1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over $\{a, b, c\}$.
- Empty string (the string of length zero) is denoted by ϵ.
- Set of all strings over Σ denoted by Σ^{*}.
- What is the "size" or "cardinality" of Σ^{*} ?

Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma=\{a, b, c\}$ or $\Sigma=\{0,1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over $\{a, b, c\}$.
- Empty string (the string of length zero) is denoted by ϵ.
- Set of all strings over Σ denoted by Σ^{*}.
- What is the "size" or "cardinality" of Σ^{*} ?
- Infinite but Countable: Can enumerate in lexicographic order:

$$
\epsilon, a, b, c, a a, a b, \ldots
$$

Definitions and notation

- An alphabet is a finite set of symbols or "letters". Eg. $\Sigma=\{a, b, c\}$ or $\Sigma=\{0,1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ. Eg. "aaba" is string over $\{a, b, c\}$.
- Empty string (the string of length zero) is denoted by ϵ.
- Set of all strings over Σ denoted by Σ^{*}.
- What is the "size" or "cardinality" of Σ^{*} ?
- Infinite but Countable: Can enumerate in lexicographic order:

$$
\epsilon, a, b, c, a a, a b, \ldots
$$

- Operation of concatenation on words: String u followed by string v : written $u \cdot v$ or simply $u v$.
- Eg. aabb \cdot aaa $=$ aabbaaa.

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ. Eg. for $\Sigma=\{a, b, c\}$:
- $L=\{a b c, a a b a\}$.
- $L_{1}=\{\epsilon, b, a a, b b, a a b, a b a, b a a, b b b, \ldots\}$.
- $L_{2}=\{ \}$.
- $L_{3}=\{\epsilon\}$.
- How many languages are there over a given alphabet Σ ?

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ. Eg. for $\Sigma=\{a, b, c\}$:
- $L=\{a b c, a a b a\}$.
- $L_{1}=\{\epsilon, b, a a, b b, a a b, a b a, b a a, b b b, \ldots\}$.
- $L_{2}=\{ \}$.
- $L_{3}=\{\epsilon\}$.
- How many languages are there over a given alphabet Σ ?
- Uncountably infinite
- Use a diagonalization argument:

	ϵ	a	b	aa	ab	ba	bb	aaa	aab	aba	abb	bbb	\cdots
L_{0}	0	1	0	0	0	1	1	0	0	0	0	0	\cdots
L_{1}	0	0	0	0	0	0	0	0	0	0	0	0	\cdots
L_{2}	1	1	0	1	0	1	1	0	0	1	0	1	\cdots
L_{3}	0	0	0	0	0	0	0	0	0	0	0	0	\cdots
L_{4}	0	1	0	0	0	1	1	0	0	0	0	0	\cdots
L_{5}	1	1	0	1	0	1	1	0	0	1	0	1	\cdots
L_{6}	0	1	0	0	0	1	1	0	0	0	0	0	\cdots
L_{7}	0	0	0	0	0	0	1	0	0	0	1	0	\cdots

Definitions and notation: Languages

- Concatenation of languages:

$$
L_{1} \cdot L_{2}=\left\{u \cdot v \mid u \in L_{1}, v \in L_{2}\right\} .
$$

- Eg. $\{a b c, a a b a\}$. $\{\epsilon, a, b b\}=$ $\{a b c, a a b a, a b c a, ~ a a b a a, ~ a b c b b, a a b a b b\}$.

Definitions and notation: DFA

A Deterministic Finite-State Automaton \mathcal{A} over an alphabet Σ

Definitions and notation: DFA

A Deterministic Finite-State Automaton \mathcal{A} over an alphabet \sum is a structure of the form

$$
(Q, s, \delta, F)
$$

where

- Q is a finite set of "states"
- $s \in Q$ is the "start" state
- $\delta: Q \times \Sigma \rightarrow Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

Example of "Odd a's" DFA: Here: $Q=\{e, o\}, s=e, F=\{o\}$, and δ is given by:

$$
\begin{aligned}
& \delta(e, a)=o \\
& \delta(e, b)=e \\
& \delta(o, a)=e \\
& \delta(o, b)=o
\end{aligned}
$$

Definitions and notation: Language accepted by a DFA

- $\widehat{\delta}$ tells us how the DFA \mathcal{A} behaves on a given word u.
- Define $\widehat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ as
- $\widehat{\delta}(q, \epsilon)=q$
- $\widehat{\delta}(q, w \cdot a)=\delta(\widehat{\delta}(q, w), a)$.
- Language accepted by \mathcal{A}, denoted $L(\mathcal{A})$, is defined as:

$$
L(\mathcal{A})=\left\{w \in \Sigma^{*} \mid \widehat{\delta}(s, w) \in F\right\}
$$

- Eg. For $\mathcal{A}=$ DFA for "Odd a 's",

$$
L(\mathcal{A})=\{a, a b, b a, a a a, a b b, b a b, b b a, \ldots\} .
$$

Regular Languages

- A language $L \subseteq \Sigma^{*}$ is called regular if there is a DFA \mathcal{A} over Σ such that $L(\mathcal{A})=L$.
- Examples of regular languages: "Odd a's", "strings that don't end inside a C-style comment", \{\}, any finite language.

All languages over Σ

- Are there non-regular languages?

Regular Languages

- A language $L \subseteq \Sigma^{*}$ is called regular if there is a DFA \mathcal{A} over Σ such that $L(\mathcal{A})=L$.
- Examples of regular languages: "Odd a's", "strings that don't end inside a C-style comment", \{\}, any finite language.

All languages over Σ

- Are there non-regular languages?
- Yes, uncountably many, since Reg is only countable while class of all languages is uncountable.

