Nondeterministic Finite-State Automata

CS 301: Theory of Computation

Sumesh Divakaran Department of Computer Science and Engineering College of Engineering Trivandrum

14th August 2019

Outline

2 Language accepted by NFAs

 $\bigcirc \mathsf{NFA} \Rightarrow \mathsf{DFA}$

Is the next-state always defined uniquely?

- In a DFA the next-state is uniquely defined for an action/event (represented by an input alphabet) from a state
- There are situations which demand to have multiple next-states from a single state for an alphabet (event or action)
- This kind of a situation can be modeled with an automata which have multiple transitions from a state for a given action (represented by an input alphabet)

Example system demanding multiple next-states

Finite set with init, insert and delete operations

Consider a finite set with init, insert and delete operations. Let *i* be the alphabet representing the action *init* which initializes the set to ϕ , *a* be the alphabet representing the action *insert(a)* which inserts the letter *a* to the set, *b* be the alphabet representing the action *insert(b)* which inserts the letter *b* to the set and *d* be the alphabet representing the action *delete* which deletes an element from a nonempty set.

The action *d* from the state $\{a, b\}$ should take the system to the state $\{a\}$ when it deletes *b* and to the state $\{b\}$ when it deletes *a*

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Nondeterministic Finite-state Automata (NFA)

- Allows multiple start states.
- Allows more than one transition from a state on a given letter.

• A word is accepted if there is some path on it from a start to a final state.

Example NFA

NFA for ?

Example NFA

"contains *abb* as a subword"

Example NFA

NFA for ?

・ロト ・西ト ・ヨト ・ヨー うらぐ

Example NFA

"2nd last symbol is a b"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example NFA

NFA for "starting with a and ending with b over $\{a, b\}^*$ "

Example NFA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example NFA

NFA for " $L = \{x \in \{a\}^* \mid \text{length}(x) \text{ is a multiple of 3 or 5}\}$ "

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example NFA

NFA definition

Mathematical representation of NFA A:

$$\begin{array}{l} \mathcal{A} = (Q, S, \Delta, F), \text{ where:} \\ S \subseteq Q, \text{ the set of start states,} \\ \Delta : Q \times \Sigma \to 2^Q \\ \text{ where } 2^Q = \{A \mid A \subseteq Q\} \end{array}$$

 $\Delta(p, a)$ gives the set of all states in Q that \mathcal{A} is allowed to move to from the state p on input a. We can write $p \xrightarrow{a} q$ to denote that $q \in \Delta(p, a)$.

Extended transition function for NFAs

The transition function Δ can be extended for strings in Σ^* in a natural way

$$\hat{\Delta}: 2^Q imes \Sigma^* o 2^Q$$

according to the rules

$$\hat{\Delta}(A, \epsilon) = A,$$
$$\hat{\Delta}(A, x \cdot a) = \Delta(\hat{\Delta}(A, x), a))$$
$$= \bigcup_{q \in \hat{\Delta}(A, x)} (\Delta(q, a))$$

 $\hat{\Delta}(A, x)$ represents the set of all states reachable under the input string x from some state in A.

 $\mathsf{NFA} \Rightarrow \mathsf{DFA}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Language accepted by an NFA

Language accepted by an NFA

The language $\mathcal{L}(\mathcal{A})$ accepted by an NFA \mathcal{A} is defined as:

$$\mathcal{L}(\mathcal{A}) = \{x \in \Sigma^* \mid \hat{\Delta}(S, x) \cap F \neq \phi\}$$

Thus, a string x is accepted when there exists a path from any start state s to any final state f (i.e. when $s \xrightarrow{x} f$)

(ロ)、(型)、(E)、(E)、 E) のQの

NFAs more powerful than DFAs for language acceptance?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

NFAs more powerful than DFAs for language acceptance?

No. Nondeterminism doesn't increase expressive power

Equivalence of NFAs and DFAs

For very NFA M accepting a language $\mathcal{L}(M)$ there exists a DFA N such that $\mathcal{L}(N) = \mathcal{L}(M)$

Corollary

The class of languages accepted by NFA is Regular

How NFA works

How NFA works

How NFA works

How NFA works

How NFA works

How NFA works

How NFA works

How NFA works

- Initially pebbles should be placed on all the start states
- Let A be the set of states with pebbles and b be the next input symbol. Then, the next set of states to hold the pebbles is:

$$\bigcup_{q\in A} (\Delta(q,b))$$

- At any point during the computation, pebbles will be placed in a subset of *Q* (state set)
- The input string is accepted if one or more final states hold pebbles when the machine finishes reading the input
- Thus, the computation of a given NFA *M* can be simulated by a DFA *N* whose states are subsets of states in *M*

DFA for simulating an NFA

DFA N simulating the NFA M

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

$\mathsf{NFA} \Rightarrow \mathsf{DFA}$

NFA \Rightarrow DFA convertion (subset construction)

Let $M = (Q_M, \Delta_M, S_M, F_M)$ be an NFA over the alphabet set Σ . Then the equivalent DFA (generating same language) $N = (Q_N, \delta_N, s_N, F_N)$ over the same alphabet set Σ can be defined as follows:

$$Q_{N} = 2^{Q_{M}}$$

$$s_{N} = S_{M}$$

$$\delta_{N}(A, b) = \bigcup_{q \in A} (\Delta(q, b))$$

$$F_{N} = \{A \subseteq Q_{M} \mid A \cap F_{M} \neq \phi\}$$

$\mathsf{NFA} \Rightarrow \mathsf{DFA}$

NFA \Rightarrow DFA convertion (subset construction)

Let $M = (Q_M, \Delta_M, S_M, F_M)$ be an NFA over the alphabet set Σ . Then the equivalent DFA (generating same language) $N = (Q_N, \delta_N, s_N, F_N)$ over the same alphabet set Σ can be defined as follows:

$$Q_{N} = 2^{Q_{M}}$$

$$s_{N} = S_{M}$$

$$\delta_{N}(A, b) = \bigcup_{q \in A} (\Delta(q, b))$$

$$F_{N} = \{A \subseteq Q_{M} \mid A \cap F_{M} \neq \phi$$

Claim

$$\mathcal{L}(N)=\mathcal{L}(M)$$

Principle of Mathematical Induction

•
$$\mathbb{N} = \{0, 1, 2 \ldots\}$$

- P(n): A statement P about a natural number n.
- Example:
 - $P_0(n) = "n \text{ is even."}$
 - $P_1(n) =$ "Sum of the numbers $1 \dots n$ equals n(n+1)/2."

•
$$P_2(n) =$$
 "For any $x, y \in \Sigma^*$ and $A \subseteq Q$, such that $|y| = n$
 $\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$ "

Principle of Induction

If a statement P about natural numbers

- is true for 0 (i.e P(0) is true), and,
- is true for n + 1 whenever it is true for n (i.e.

$$P(n) \implies P(n+1))$$

then P is true of all natural numbers (i.e. "For all n, P(n)" is true).

Proof of $\mathcal{L}(N) = \mathcal{L}(M)$

Lemma 1

For any $x, y \in \Sigma^*$ and $A \subseteq Q$,

$$\hat{\Delta}(A, xy) = \hat{\Delta}(\hat{\Delta}(A, x), y)$$

Proof.

Induction on the length of y Basis: $|y| = 0 \implies y = \epsilon$

> $\hat{\Delta}(A, x\epsilon) = \hat{\Delta}(A, x)$ by definition of concatenation = $\hat{\Delta}(\hat{\Delta}(A, x), \epsilon)$ by definition of $\hat{\Delta}$

> > ・ロト・西ト・西ト・日・ 日・ シック

Proof of $\hat{\Delta}(A, x \cdot y) = \hat{\Delta}(\hat{\Delta}(A, x), y)$

Proof.

Induction step: For $y \in \Sigma^*$ and $a \in \Sigma$,

$$\begin{split} \hat{\Delta}(A, xya) = &\Delta(\hat{\Delta}(A, xy), a) \text{ by the definition of } \hat{\Delta} \\ = &\Delta(\hat{\Delta}(\hat{\Delta}(A, x), y), a) \text{ by the induction hypothesis} \\ = &\hat{\Delta}(\hat{\Delta}(A, x), ya) \text{ by the definition of } \hat{\Delta} \end{split}$$

Lemma 2 to prove that $\mathcal{L}(N) = \mathcal{L}(M)$

Lemma 2

For any $A \subseteq Q_M$ and $x \in \Sigma^*$,

$$\hat{\delta}_N(A,x) = \hat{\Delta}_M(A,x)$$

Proof.

Induction on the length of x Basis: $x = \epsilon$, we want to show that $\hat{\delta}_N(A, \epsilon) = \hat{\Delta}_M(A, \epsilon)$. This is done since by definitions of $\hat{\delta}_N$ and $\hat{\Delta}_M$ we have $\hat{\delta}_N(A, \epsilon) = A = \hat{\Delta}_M(A, \epsilon)$

Proof of
$$\hat{\delta}_{N}(A,x) = \hat{\Delta}_{M}(A,x)$$

Proof.

Induction step: For $x \in \Sigma^*$ and $a \in \Sigma$,

$$\begin{split} \hat{\delta}_{N}(A, xa) = & \delta_{N}(\hat{\delta}_{N}(A, x), a) \\ = & \delta_{N}(\hat{\Delta}_{M}(A, x), a) \\ = & \hat{\Delta}_{M}(\hat{\Delta}_{M}(A, x), a) \\ = & \hat{\Delta}_{M}(A, xa) \end{split}$$

by the definition of $\hat{\delta}_N$ by induction hypothesis by the definition of $\hat{\delta}_N$ by Lemma 1

Proof of Theorem 1 ($\mathcal{L}(N) = \mathcal{L}(M)$)

Proof.

For any $x \in \Sigma^*$,

 $\begin{array}{l} x \in \mathcal{L}(N) \iff \hat{\delta}_N(s_N, x) \in F_N \\ & \text{by the definition of acceptance of } N \\ \iff \hat{\Delta}_M(S_M, x) \cap F_M \neq \phi \\ & \text{by definition of } s_N \text{ and } F_N \text{ and Lemma 2} \\ \iff x \in \mathcal{L}(M) \end{array}$

by definition of acceptance of ${\cal M}$