
NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Nondeterministic Finite-State Automata

CS 301:Theory of Computation

Sumesh Divakaran
Department of Computer Science and Engineering

College of Engineering Trivandrum

14th August 2019

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Outline

1 NFA’s

2 Language accepted by NFAs

3 NFA ⇒ DFA

4 Induction

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Is the next-state always defined uniquely?

In a DFA the next-state is uniquely defined for an
action/event (represented by an input alphabet) from a state

There are situations which demand to have multiple
next-states from a single state for an alphabet (event or
action)

This kind of a situation can be modeled with an automata
which have multiple transitions from a state for a given action
(represented by an input alphabet)

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example system demanding multiple next-states

Finite set with init, insert and delete operations

Consider a finite set with init, insert and delete operations. Let i
be the alphabet representing the action init which initializes the set
to φ, a be the alphabet representing the action insert(a) which
inserts the letter a to the set, b be the alphabet representing the
action insert(b) which inserts the letter b to the set and d be the
alphabet representing the action delete which deletes an element
from a nonempty set.

i φ?

a

b

{a, b}

{a}

{b} a

b

d

d

The action d from the state {a, b} should take the system to the
state {a} when it deletes b and to the state {b} when it deletes a

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Nondeterministic Finite-state Automata (NFA)

Allows multiple start states.

Allows more than one transition from a state on a given letter.

Non-deterministic transitions
a

a
p

q

r

A word is accepted if there is some path on it from a start to
a final state.

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for ?

a

a b

a, b

ab abbε

b

a, b

“contains abb as a subword”

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for ?

a

a b

a, b

ab abbε

b

a, b

“contains abb as a subword”

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for ?

b

a, b

t us

a, b

“2nd last symbol is a b”

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for ?

b

a, b

t us

a, b

“2nd last symbol is a b”

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for “starting with a and ending with b over {a, b}∗”

a

t us

b

a, b

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for “starting with a and ending with b over {a, b}∗”

a

t us

b

a, b

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for “L = {x ∈ {a}∗ | length(x) is a multiple of 3 or 5}”

a

a

a

a

aa

a a

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Example NFA

NFA for “L = {x ∈ {a}∗ | length(x) is a multiple of 3 or 5}”

a

a

a

a

aa

a a

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

NFA definition

Mathematical representation of NFA A:

A =(Q, S ,∆,F), where:

S ⊆Q, the set of start states,

∆ :Q × Σ→ 2Q

where 2Q = {A | A ⊆ Q}

∆(p, a) gives the set of all states in Q that A is allowed to move
to from the state p on input a. We can write p

a→ q to denote
that q ∈ ∆(p, a).

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Extended transition function for NFAs

The transition function ∆ can be extended for strings in Σ∗ in a
natural way

∆̂ : 2Q × Σ∗ →2Q

according to the rules

∆̂(A, ε) =A,

∆̂(A, x · a) =∆(∆̂(A, x), a))

=
⋃

q∈∆̂(A,x)

(∆(q, a))

∆̂(A, x) represents the set of all states reachable under the input
string x from some state in A.

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Language accepted by an NFA

Language accepted by an NFA

The language L(A) accepted by an NFA A is defined as:

L(A) = {x ∈ Σ∗ | ∆̂(S , x) ∩ F 6= φ}

Thus, a string x is accepted when there exists a path from any
start state s to any final state f (i.e. when s

x→ f)

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

NFAs more powerful than DFAs for language acceptance?

No. Nondeterminism doesn’t increase expressive power

Equivalence of NFAs and DFAs

For very NFA M accepting a language L(M) there exists a DFA N
such that L(N) = L(M)

Corollary

The class of languages accepted by NFA is Regular

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

NFAs more powerful than DFAs for language acceptance?

No. Nondeterminism doesn’t increase expressive power

Equivalence of NFAs and DFAs

For very NFA M accepting a language L(M) there exists a DFA N
such that L(N) = L(M)

Corollary

The class of languages accepted by NFA is Regular

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - abaaba

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xbaaba

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xxaaba

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xxxaba

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xxxxba

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xxxxxa

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

NFA for “2nd last symbol is a b”

b

a, b

t us

a, b

Input - xxxxxx

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

How NFA works

Initially pebbles should be placed on all the start states

Let A be the set of states with pebbles and b be the next input
symbol. Then, the next set of states to hold the pebbles is:⋃

q∈A
(∆(q, b))

At any point during the computation, pebbles will be placed
in a subset of Q (state set)

The input string is accepted if one or more final states hold
pebbles when the machine finishes reading the input

Thus, the computation of a given NFA M can be simulated by
a DFA N whose states are subsets of states in M

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

DFA for simulating an NFA

NFA M for “2nd last symbol is a b”

b

a, b

t us

a, b

DFA N simulating the NFA M

b a

a

b

{s}

a

{s, t} {s, u}

{s, t, u}

b
b

a

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

NFA ⇒ DFA

NFA ⇒ DFA convertion (subset construction)

Let M = (QM ,∆M ,SM ,FM) be an NFA over the alphabet set Σ.
Then the equivalent DFA (generating same language)
N = (QN , δN , sN ,FN) over the same alphabet set Σ can be defined
as follows:

QN =2QM

sN =SM

δN(A, b) =
⋃
q∈A

(∆(q, b))

FN ={A ⊆ QM | A ∩ FM 6= φ}

Claim

L(N) = L(M)

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

NFA ⇒ DFA

NFA ⇒ DFA convertion (subset construction)

Let M = (QM ,∆M ,SM ,FM) be an NFA over the alphabet set Σ.
Then the equivalent DFA (generating same language)
N = (QN , δN , sN ,FN) over the same alphabet set Σ can be defined
as follows:

QN =2QM

sN =SM

δN(A, b) =
⋃
q∈A

(∆(q, b))

FN ={A ⊆ QM | A ∩ FM 6= φ}

Claim

L(N) = L(M)

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Principle of Mathematical Induction

N = {0, 1, 2 . . .}
P(n): A statement P about a natural number n.
Example:

P0(n) = “n is even.”
P1(n) = “Sum of the numbers 1 . . . n equals n(n + 1)/2.”
P2(n) = “For any x , y ∈ Σ∗ and A ⊆ Q, such that |y | = n
∆̂(A, xy) = ∆̂(∆̂(A, x), y)”

Principle of Induction

If a statement P about natural numbers

is true for 0 (i.e P(0) is true), and,

is true for n + 1 whenever it is true for n (i.e.
P(n) =⇒ P(n + 1))

then P is true of all natural numbers (i.e. “For all n, P(n)” is
true).

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Proof of L(N) = L(M)

Lemma 1

For any x , y ∈ Σ∗ and A ⊆ Q,

∆̂(A, xy) = ∆̂(∆̂(A, x), y)

Proof.

Induction on the length of y
Basis: |y | = 0 =⇒ y = ε

∆̂(A, xε) =∆̂(A, x) by definition of concatenation

=∆̂(∆̂(A, x), ε) by definition of ∆̂

�

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Proof of ∆̂(A, x · y) = ∆̂(∆̂(A, x), y)

Proof.

Induction step: For y ∈ Σ∗ and a ∈ Σ,

∆̂(A, xya) =∆(∆̂(A, xy), a) by the definition of ∆̂

=∆(∆̂(∆̂(A, x), y), a) by the induction hypothesis

=∆̂(∆̂(A, x), ya) by the definition of ∆̂

�

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Lemma 2 to prove that L(N) = L(M)

Lemma 2

For any A ⊆ QM and x ∈ Σ∗,

δ̂N(A, x) = ∆̂M(A, x)

Proof.

Induction on the length of x
Basis: x = ε,
we want to show that δ̂N(A, ε) = ∆̂M(A, ε).
This is done since by definitions of δ̂N and ∆̂M we have
δ̂N(A, ε) = A = ∆̂M(A, ε) �

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Proof of δ̂N(A, x) = ∆̂M(A, x)

Proof.

Induction step: For x ∈ Σ∗ and a ∈ Σ,

δ̂N(A, xa) =δN(δ̂N(A, x), a) by the definition of δ̂N

=δN(∆̂M(A, x), a) by induction hypothesis

=∆̂M(∆̂M(A, x), a) by the definition of δ̂N

=∆̂M(A, xa) by Lemma 1

�

NFA’s Language accepted by NFAs NFA ⇒ DFA Induction

Proof of Theorem 1 (L(N) = L(M))

Proof.

For any x ∈ Σ∗,

x ∈ L(N) ⇐⇒ δ̂N(sN , x) ∈ FN

by the definition of acceptance of N

⇐⇒ ∆̂M(SM , x) ∩ FM 6= φ

by definition of sN and FN and Lemma 2

⇐⇒ x ∈ L(M)

by definition of acceptance of M

�

	NFA's
	Language accepted by NFAs
	NFA DFA
	Induction

