Nondeterministic Finite-State Automata

CS 301:Theory of Computation

Sumesh Divakaran
Department of Computer Science and Engineering
College of Engineering Trivandrum
$14^{\text {th }}$ August 2019

Outline

(1) NFA's
(2) Language accepted by NFAs
(3) NFA \Rightarrow DFA
(4) Induction

Is the next-state always defined uniquely?

- In a DFA the next-state is uniquely defined for an action/event (represented by an input alphabet) from a state
- There are situations which demand to have multiple next-states from a single state for an alphabet (event or action)
- This kind of a situation can be modeled with an automata which have multiple transitions from a state for a given action (represented by an input alphabet)

Example system demanding multiple next-states

Finite set with init, insert and delete operations

Consider a finite set with init, insert and delete operations. Let i be the alphabet representing the action init which initializes the set to ϕ, a be the alphabet representing the action insert(a) which inserts the letter a to the set, b be the alphabet representing the action insert(b) which inserts the letter b to the set and d be the alphabet representing the action delete which deletes an element from a nonempty set.

The action d from the state $\{a, b\}$ should take the system to the state $\{a\}$ when it deletes b and to the state $\{b\}$ when it deletes a

Nondeterministic Finite-state Automata (NFA)

- Allows multiple start states.
- Allows more than one transition from a state on a given letter.

Non-deterministic transitions

- A word is accepted if there is some path on it from a start to a final state.

Example NFA

NFA for?

Example NFA

NFA for ?

"contains $a b b$ as a subword"

Example NFA

NFA for ?

Example NFA

NFA for?

" $2^{\text {nd }}$ last symbol is a b "

Example NFA

NFA for "starting with a and ending with b over

Example NFA

NFA for

Example NFA

NFA for "

Example NFA

NFA for "

NFA definition

Mathematical representation of NFA \mathcal{A} :

$$
\begin{aligned}
& \mathcal{A}=(Q, S, \Delta, F), \text { where: } \\
& S \subseteq Q, \text { the set of start states, } \\
& \Delta: Q \times \Sigma \rightarrow 2^{Q} \\
& \quad \text { where } 2^{Q}=\{A \mid A \subseteq Q\}
\end{aligned}
$$

$\Delta(p, a)$ gives the set of all states in Q that \mathcal{A} is allowed to move to from the state p on input a. We can write $p \xrightarrow{a} q$ to denote that $q \in \Delta(p, a)$.

Extended transition function for NFAs

The transition function Δ can be extended for strings in \sum^{*} in a natural way

$$
\begin{aligned}
\hat{\Delta}: 2^{Q} \times \Sigma^{*} & \rightarrow 2^{Q} \\
& \text { according to the rules } \\
\hat{\Delta}(A, \epsilon) & =A, \\
\hat{\Delta}(A, x \cdot a) & =\Delta(\hat{\Delta}(A, x), a)) \\
& =\bigcup_{q \in \hat{\Delta}(A, x)}(\Delta(q, a))
\end{aligned}
$$

$\hat{\Delta}(A, x)$ represents the set of all states reachable under the input string x from some state in A.

Language accepted by an NFA

Language accepted by an NFA

The language $\mathcal{L}(\mathcal{A})$ accepted by an NFA \mathcal{A} is defined as:

$$
\mathcal{L}(\mathcal{A})=\left\{x \in \Sigma^{*} \mid \hat{\Delta}(S, x) \cap F \neq \phi\right\}
$$

Thus, a string x is accepted when there exists a path from any start state s to any final state $f($ i.e. when $s \xrightarrow{x} f$)

NFAs more powerful than DFAs for language acceptance?

NFAs more powerful than DFAs for language acceptance?

No. Nondeterminism doesn't increase expressive power

Equivalence of NFAs and DFAs

For very NFA M accepting a language $\mathcal{L}(M)$ there exists a DFA N such that $\mathcal{L}(N)=\mathcal{L}(M)$

Corollary
The class of languages accepted by NFA is Regular

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b "

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b "

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b"

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b "

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b "

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b"

How NFA works

NFA for " ${ }^{\text {nd }}$ last symbol is a b"

How NFA works

- Initially pebbles should be placed on all the start states
- Let A be the set of states with pebbles and b be the next input symbol. Then, the next set of states to hold the pebbles is:

$$
\bigcup_{q \in A}(\Delta(q, b))
$$

- At any point during the computation, pebbles will be placed in a subset of Q (state set)
- The input string is accepted if one or more final states hold pebbles when the machine finishes reading the input
- Thus, the computation of a given NFA M can be simulated by a DFA N whose states are subsets of states in M

DFA for simulating an NFA

NFA M for

```
"


DFA \(N\) simulating the NFA \(M\)


\section*{NFA \(\Rightarrow\) DFA}

\section*{NFA \(\Rightarrow\) DFA convertion (subset construction)}

Let \(M=\left(Q_{M}, \Delta_{M}, S_{M}, F_{M}\right)\) be an NFA over the alphabet set \(\Sigma\). Then the equivalent DFA (generating same language) \(N=\left(Q_{N}, \delta_{N}, s_{N}, F_{N}\right)\) over the same alphabet set \(\Sigma\) can be defined as follows:
\[
\begin{aligned}
Q_{N} & =2^{Q_{M}} \\
s_{N} & =S_{M} \\
\delta_{N}(A, b) & =\bigcup_{q \in A}(\Delta(q, b)) \\
F_{N} & =\left\{A \subseteq Q_{M} \mid A \cap F_{M} \neq \phi\right\}
\end{aligned}
\]

\section*{NFA \(\Rightarrow\) DFA}

\section*{NFA \(\Rightarrow\) DFA convertion (subset construction)}

Let \(M=\left(Q_{M}, \Delta_{M}, S_{M}, F_{M}\right)\) be an NFA over the alphabet set \(\Sigma\). Then the equivalent DFA (generating same language) \(N=\left(Q_{N}, \delta_{N}, s_{N}, F_{N}\right)\) over the same alphabet set \(\Sigma\) can be defined as follows:
\[
\begin{aligned}
Q_{N} & =2^{Q_{M}} \\
s_{N} & =S_{M} \\
\delta_{N}(A, b) & =\bigcup_{q \in A}(\Delta(q, b)) \\
F_{N} & =\left\{A \subseteq Q_{M} \mid A \cap F_{M} \neq \phi\right\}
\end{aligned}
\]

Claim
\(\mathcal{L}(N)=\mathcal{L}(M)\)

\section*{Principle of Mathematical Induction}
- \(\mathbb{N}=\{0,1,2 \ldots\}\)
- \(P(n)\) : A statement \(P\) about a natural number \(n\).
- Example:
- \(P_{0}(n)=" n\) is even."
- \(P_{1}(n)=\) "Sum of the numbers \(1 \ldots n\) equals \(n(n+1) / 2\)."
- \(P_{2}(n)=\) "For any \(x, y \in \Sigma^{*}\) and \(A \subseteq Q\), such that \(|y|=n\) \(\hat{\Delta}(A, x y)=\hat{\Delta}(\hat{\Delta}(A, x), y) "\)

\section*{Principle of Induction}

If a statement \(P\) about natural numbers
- is true for 0 (i.e \(P(0)\) is true), and,
- is true for \(n+1\) whenever it is true for \(n\) (i.e.
\[
P(n) \Longrightarrow P(n+1))
\]
then \(P\) is true of all natural numbers (i.e. "For all \(n, P(n)\) " is true).

\section*{Proof of \(\mathcal{L}(N)=\mathcal{L}(M)\)}

\section*{Lemma 1}

For any \(x, y \in \Sigma^{*}\) and \(A \subseteq Q\),
\[
\hat{\Delta}(A, x y)=\hat{\Delta}(\hat{\Delta}(A, x), y)
\]

\section*{Proof.}

Induction on the length of \(y\)
Basis: \(|y|=0 \Longrightarrow y=\epsilon\)
\[
\begin{aligned}
\hat{\Delta}(A, x \epsilon) & =\hat{\Delta}(A, x) \text { by definition of concatenation } \\
& =\hat{\Delta}(\hat{\Delta}(A, x), \epsilon) \text { by definition of } \hat{\Delta}
\end{aligned}
\]

\section*{Proof of \(\hat{\Delta}(A, x \cdot y)=\hat{\Delta}(\hat{\Delta}(A, x), y)\)}

\section*{Proof.}

Induction step: For \(y \in \Sigma^{*}\) and \(a \in \Sigma\),
\(\hat{\Delta}(A, x y a)=\Delta(\hat{\Delta}(A, x y), a)\) by the definition of \(\hat{\Delta}\)
\[
\begin{aligned}
& =\Delta(\hat{\Delta}(\hat{\Delta}(A, x), y), a) \text { by the induction hypothesis } \\
& =\hat{\Delta}(\hat{\Delta}(A, x), y a) \text { by the definition of } \hat{\Delta}
\end{aligned}
\]

\section*{Lemma 2 to prove that \(\mathcal{L}(N)=\mathcal{L}(M)\)}

\section*{Lemma 2}

For any \(A \subseteq Q_{M}\) and \(x \in \Sigma^{*}\),
\[
\hat{\delta}_{N}(A, x)=\hat{\Delta}_{M}(A, x)
\]

\section*{Proof.}

Induction on the length of \(x\)
Basis: \(x=\epsilon\),
we want to show that \(\hat{\delta}_{N}(A, \epsilon)=\hat{\Delta}_{M}(A, \epsilon)\).
This is done since by definitions of \(\hat{\delta}_{N}\) and \(\hat{\Delta}_{M}\) we have \(\hat{\delta}_{N}(A, \epsilon)=A=\hat{\Delta}_{M}(A, \epsilon)\)

\section*{Proof of \(\hat{\delta}_{N}(A, x)=\hat{\Delta}_{M}(A, x)\)}

\section*{Proof.}

Induction step: For \(x \in \Sigma^{*}\) and \(a \in \Sigma\),
\[
\begin{aligned}
\hat{\delta}_{N}(A, x a) & =\delta_{N}\left(\hat{\delta}_{N}(A, x), a\right) \\
& =\delta_{N}\left(\hat{\Delta}_{M}(A, x), a\right) \\
& =\hat{\Delta}_{M}\left(\hat{\Delta}_{M}(A, x), a\right) \\
& =\hat{\Delta}_{M}(A, x a)
\end{aligned}
\]
by the definition of \(\hat{\delta}_{N}\) by induction hypothesis by the definition of \(\hat{\delta}_{N}\) by Lemma 1

\section*{Proof of Theorem \(1(\mathcal{L}(N)=\mathcal{L}(M))\)}

\section*{Proof.}

For any \(x \in \Sigma^{*}\),
\[
x \in \mathcal{L}(N) \Longleftrightarrow \hat{\delta}_{N}\left(s_{N}, x\right) \in F_{N}
\]
by the definition of acceptance of \(N\)
\(\Longleftrightarrow \hat{\Delta}_{M}\left(S_{M}, x\right) \cap F_{M} \neq \phi\) by definition of \(s_{N}\) and \(F_{N}\) and Lemma 2
\(\Longleftrightarrow x \in \mathcal{L}(M)\)
by definition of acceptance of \(M\)```

