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O NFA's
© Language accepted by NFAs
© NFA = DFA

@ Induction



Is the next-state always defined uniquely?

@ In a DFA the next-state is uniquely defined for an
action/event (represented by an input alphabet) from a state

@ There are situations which demand to have multiple
next-states from a single state for an alphabet (event or
action)

@ This kind of a situation can be modeled with an automata
which have multiple transitions from a state for a given action
(represented by an input alphabet)



Example system demanding multiple next-states

Finite set with , and operations

Consider a finite set with init, insert and delete operations. Let i
be the alphabet representing the action init which initializes the set
to ¢, a be the alphabet representing the action insert(a) which
inserts the letter a to the set, b be the alphabet representing the
action insert(b) which inserts the letter b to the set and d be the
alphabet representing the action delete which deletes an element
from a nonempty set.

@

The action d from the state {a, b} should take the system to the
state {a} when it deletes b and to the state {b} when it deletes a




Nondeterministic Finite-state Automata (NFA)

o Allows multiple start states.

@ Allows more than one transition from a state on a given letter.

Non-deterministic transitions

@ A word is accepted if there is some path on it from a start to
a final state.



NFA's

Example NFA




Example NFA

“contains abb as a subword”



NFA's

Example NFA




Example NFA

“2nd Jast symbol is a b”
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Example NFA
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Example NFA

NFA for “ "




NFA's

Example NFA

O




NFA definition

Mathematical representation of NFA A:

A=(Q,S,A,F), where:
S CQ, the set of start states,
A:QxX—29
where 29 = {A|ACQ}
A(p, a) gives the set of all states in Q that A is allowed to move

to from the state p on input a. We can write p > g to denote
that g € A(p, a).



Language accepted by NFAs

Extended transition function for NFAs

The transition function A can be extended for strings in X* in a
natural way

A 29 x¥* 50Q

according to the rules

A(A, €) =A,
A(A, x - a) =A(A(A, x), a))
- U (@9
geA(Ax)

~

A(A, x) represents the set of all states reachable under the input
string x from some state in A.



Language accepted by NFAs

Language accepted by an NFA

Language accepted by an NFA
The language L£(.A) accepted by an NFA A is defined as:

L(A) = {xeT* | A(5,x)NF # ¢}

Thus, a string x is accepted when there exists a path from any
start state s to any final state f (i.e. when s = f)



Language accepted by NFAs

NFAs more powerful than DFAs for language acceptance?




Language accepted by NFAs

NFAs more powerful than DFAs for language acceptance?

No. Nondeterminism doesn't increase expressive power

Equivalence of NFAs and DFAs

For very NFA M accepting a language L£(M) there exists a DFA N
such that £L(N) = L(M)

The class of languages accepted by NFA is Regular




How NFA works

Input - abaaba




How NFA works

Input - xbaaba




How NFA works

Input - xxaaba




How NFA works

Input - xxxaba




How NFA works

Input - xxxxba




How NFA works

Input - xxxxxa




How NFA works

Input - xxxxxx




How NFA works

@ Initially pebbles should be placed on all the start states

@ Let A be the set of states with pebbles and b be the next input
symbol. Then, the next set of states to hold the pebbles is:

U(a(a. b))

geA

@ At any point during the computation, pebbles will be placed
in a subset of Q (state set)

@ The input string is accepted if one or more final states hold
pebbles when the machine finishes reading the input

@ Thus, the computation of a given NFA M can be simulated by
a DFA N whose states are subsets of states in M



DFA for simulating an NFA

v

b




NFA = DFA

NFA = DFA

NFA = DFA convertion ( )

Let M = (Qm, Am, Sm, Fm) be an NFA over the alphabet set X.
Then the equivalent DFA (generating same language)
N = (Qn,On, Sy, Fn) over the same alphabet set ¥ can be defined

as follows:
Qu =2%
SN ZSM
on(A,b) = J(A(a, b))
qeA

Fn ={AC Qu | AN Fy # ¢}
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Induction

Principle of Mathematical Induction

e N=4{0,1,2...}

e P(n): A statement P about a natural number n.

e Example:
e Py(n) = "nis even."
o Pi(n) = "Sum of the numbers 1...n equals n(n+1)/2."
o Pp(n) = "Forany x,y € ¥* and A C Q, such that |y| =n

~ A A

A(A, xy) = A(A(A, x), y)"

Principle of Induction
If a statement P about natural numbers
@ is true for 0 (i.e P(0) is true), and,
@ is true for n 4+ 1 whenever it is true for n (i.e.
P(n) = P(n+1))
then P is true of all natural numbers (i.e. “For all n, P(n)" is
true).




Induction

Proof of L(N) = L(M)

For any x,y € X* and A C Q,
A(A,xy) = A(A(A, %), y)

Induction on the length of y
Basis: |y|=0 = y =¢

A(A, xe) =A(A, x) by definition of concatenation
=A(A(A, x), €) by definition of A




Induction

Proof of A(A, x - y) = A(A(A, x), y)

Induction step: For y € ¥* and a € ¥,

A(A, xya) =A(A(A, xy), a) by the definition of A
=A(A(A(A, x),y), a) by the induction hypothesis
=A(A(A, x), ya) by the definition of A




Induction

Lemma 2 to prove that L(N) = L(M)

For any AC Qp and x € %,

SN(Avx) = A/\/I(Avx)

| A

Proof.

Induction on the length of x

Basis: x = ¢,

we want to show that dy(A, €) = Ay(A,e).

This is done since by definitions of SN and AM we have

on(Ae) = A= Ap(A e O

A\




Induction

Proof of dn(A, x) = Ay(A, x)

Induction step: For x € £* and a € L,

Sn(A, xa) =6y (dn(A, x), a) by the definition of §y
—6N(A (A, x),a) by induction hypothesis
Am(Am(A x), a) by the definition of dy

=A (A, xa) by Lemma 1




Induction

Proof of Theorem 1 (L(N) = L(M))

For any x € ¥*,

X € E(N) <— SN(SN,X) € Fy
by the definition of acceptance of N
= Ap(Sm, x) N Fuy # ¢
by definition of sy and Fy and Lemma 2
— x € L(M)

by definition of acceptance of M
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